Bezout’s theorem: I

نویسنده

  • Ryan Reich
چکیده

This week we will be studying the tropical analogue of Bezout’s theorem, which in classical geometry gives a precise count of the number of intersections between two projective algebraic curves. It turns out, interestingly, that although all the definitions (except that of intersection) are different in tropical geometry, we can also prove a theorem with the same statement. Next time, we will see that in fact the two theorems are closely related.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strassen’s lower bound for polynomial evaluation and Bezout’s theorem

Strassen’s lower bound for polynomial evaluation and Bezout’s theorem Recall Strassen’s algorithm from the previous lecture: Given: (a0, . . . , an−1), (x1, . . . , xn) ∈ K, and polynomial p(x) = ∑n−1 i=0 aix i Task: find (z1, . . . , zn), zi = p(xi) How many steps do we need to accomplish this task? Using the Fast Fourier Transform (FFT) we need O(n log n) steps. Strassen was interested whethe...

متن کامل

Curves in P and Bezout’s Theorem

In this paper we introduce projective geometry and one of its important theorems. We begin by defining projective space in terms of homogenous coordinates. Next, we define homgenous curves, and describe a few important properties they have. We then introduce Bezout’s Theorem, which asserts that the number of intersection points of two homogenous curves is less than or equal to the product of th...

متن کامل

On the Intersection of Acm Curves in P

Bezout’s theorem gives us the degree of intersection of two properly intersecting projective varieties. As two curves in P never intersect properly, Bezout’s theorem cannot be directly used to bound the number of intersection points of such curves. In this work, we bound the maximum number of intersection points of two integral ACM curves in P. The bound that we give is in many cases optimal as...

متن کامل

An Arithmetic Analogue of Bezout’s Theorem

In this paper, we prove two versions of an arithmetic analogue of Bezout’s theorem, subject to some technical restrictions. The basic formula proven is deg(V )h(X∩Y ) = h(X) deg(Y )+h(Y ) deg(X)+O(1), where X and Y are algebraic cycles varying in properly intersecting families on a regular subvariety VS ⊂ PS . The theorem is inspired by the arithmetic Bezout inequality of Bost, Gillet, and Soul...

متن کامل

On the Classification of Exceptional Planar Functions over $\mathbb{F}_{p}$

We will present many strong partial results towards a classification of exceptional planar/PN monomial functions on finite fields. The techniques we use are the Weil bound, Bezout’s theorem, and Bertini’s theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008